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1. Introduction

At a typical orienteering event, the runner is confronted with numerous challenges: physical,
strategic and navigation. The runner must not only establish a route, but also maintain
and update awareness of position - without benefit of satellite positioning hardware! In this
project, a basic POMDP is developed which should serve as a starting point for further
development as a planning tool for events. Some aspects of an orienteering POMDP and
its SARSOP solution are analyzed for a simplified, synthetic event map of a modest size.

2. Orienteering

Orienteering (https://www.baoc.org/wiki/Welcome) is a challenging activity and sport
which combines running, route and control point finding and route planning. Control points
are stations/devices placed across the orienteering course - typically part of a park. While
there are several varieties of events and scoring, for the purposes of this analysis we consider
a variation of common orienteering events where:

e The runner can visit control points (CPs) in any order.

e The scoring is based on the time between leaving a start point and arriving at a final
location.

e The runner visits all control points.

e A map of the course - with the CPs - is available ahead of time.

Generally, orienteering events are in moderately complex terrain with trails, roads, ele-
vation changes, areas of difficult running and/or navigation, and control points which are a
challenge to find - from a distance, anyways. A POMDP is an appropriate model - in the
simplified case considered here - because our position is uncertain.

The primary goal of the POMDP planner is the generation of an optimal route and
suggestions on strategy - e.g., when and where to check the map. This is a perfect scenario
for offline planning. While it might be possible to provide action suggestions during a
race via smartphone, it is not clear if this fits into the (rather anti-technology) rules of
orienteering. A more likely scenario is a transfer of strategies found by the planner (e.g.,
where to check your map) to the human runner.

3. Previous work

Much literature (e.g. Vansteenwegen and Souffriau (2011)) applies to the Orienteering
Problem (OP) and its many variants. The underlying (MDP) traveling-salesman problem
is the core of the optimal route problem. Uncertainty of various types have been considered,
especially in the context of robotics (e.g. Peltzer et al. (2022)). However, our interest here
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is really in understanding, modeling and manipulating how a human interacts with the
map and location uncertainty (e.g. Waddington and Heisz (2023)). Thus, our POMDP
components (e.g., observation model) should reflect human perception and behavior.

4. The POMDP

Defining the POMDP related to human localization and progress in an orienteering com-
petition reveals numerous subtleties related to how we interact with the map. We briefly
describe each component of the POMDP.

States

The state is a combination of our current location (a grid world allowing diagonal movement)
and whether or not we have visited our control points. An additional state is the terminal
state - which has location (—1, —1). The state space dimension is therefore |S| = n,n, 2" +
1 where n, is the number of control points.

Actions

There are 9 actions:

const BASIC_ACTIONS_DICT =
Dict(

:MapCheck => 1,
:north => 2,
:northeast => 3,
:east => 4,
:southeast => 5,
:south => 6,
:southwest => 7,
:west => 8,
:northwest => 9,

Transition

For this simple POMDP, the key to modeling human navigation/route progress on terrain
is a stochastic component of the transition function. In this case, we treat our actual
movement direction as a distribution about the intended bearing (action). In our case, the
probability of transition is:

Pleft =p(mod(a — 3,8) +2) = (1 — pa)/2
Dcenter :P(a) = Pa
Pright =p(mod(a —1,8) +2) = (1 — p,)/2

where this looks a little peculiar due to movement actions beginning at action 2 instead
of 1. T use p, = 0.7 in the examples below. In reality, p, will be a function of position on
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the map - in dense woods, it could be smaller. In other map regions with good visibility,
pq might be closer to 1.0.

There is other logic in the transition function to insure certain rewards are only rewarded
once - and so are terminal states or sub-states.

Reward

Rewards are (values used in the results section are shown):

e step penalty (increased by v/2 for diagonal moves): -1

e control point rewards (with POMDP logic for 1x accrual): CP1: 25, CP2: 20
e exit reward (with POMDP logic for 1x accrual): 20

e MapCheck penalty (this takes time): -1

Observation

The observation space encodes the probability that the runner is at a position on the map,
given the assessment of the runner. The dimension of the observation space is |O| =
ngzny + 1. The additional observation corresponds to the lack of an observation. We abuse
notation in this section in that observations only care about state position. There is no
uncertainty in the state of the control points (i.e, whether or not the runner has visited
them).

e If we are at known landmark s;, where s; € {cpo, cp1, ..., Sinit, Sewit }» regardless of
action:

O(olsi, a) = 5,(0)

where 0, (y) =0 if x # y.
e Else, if a ¢ MapCheck,
O(ols,a) = d,,(0)

where o, is the non-observation observation. This implies we propagate belief purely
via the transition function.
e Else (a = MapCheck):

O(o|s,a) x N(o—s,%)
O(orlsi,a) =0

where o; is the observation corresponding to the location of s;. We only get non-
zero probability of being at known landmarks s; if we are the landmark. X is a
diagonal covariance matrix with entries 02. The multivariate Gaussian is only a
convenient choice for early development of the observation model (although note the
final distribution may have holes in it due to landmarks). A human assessment of

location is likely not to be Gaussian - nor even uni-modal.

5. Solutions and Metrics

The Julia POMDP packages (POMDPs, SARSOP) (Egorov et al. (2017), Hanna Kurniawati
(2008), Ong et al. (2009)) were used to implement the solution to route planning and



following with position uncertainty. This implementation was a natural modification of
the RockSample.jl (https://github.com/JuliaPOMDP/RockSample. j1l) POMDP example,
which differs from this problem in the type and source of state uncertainty.

The solver used for this problem was SARSOP. State spaces for the maps chosen have
dimension < 1000 and reasonably good approximations can be computed with SARSOP
in minutes or hours. A SARSOP solution provides an alpha vector policy, each alpha
vector tagged with an action (Kochenderfer et al. (2022), Hanna Kurniawati (2008)). More
algorithmic work is likely needed to scale to realistic orienteering maps. It is also possible
that maps could be reduced to more compact graphs (Peltzer et al. (2022)).

SARSOP policies are evaluated in simulation for a simple 10 x 10, 2-control point (2CP)
map scenario - see table 1. An example time step of interest is shown in figure 1. Two
metrics are defined in terms of how well the planning algorithm navigates the course. Since
we are primarily interested in how navigation effects our race performance, we choose two
measures of route time inflation. Assuming a constant velocity, the number of steps until
simulation reaches the terminal state is a proxy for the route time. An inflation of route
time over the best possible (no position uncertainty or fully-observed MDP) route time of
50% is defined as a ”bad” navigation outcome. A doubling of the route time over the best
route time is ” catastrophic”. The associated metrics are the probabilities of these navigation
outcomes: p, ("bad”) and p. (”catastrophic”). These are estimated from 1000 simulations.
Route time inflation (statistically) may be exacerbated by the POMDP solver, but it is
an intrinsic feature of the POMDP - due to the stochastic dynamics and the observation
function.

The best route/route time can be solved using SARSOP as follows: set the transition
to deterministic (set p, = 1). SARSOP discovers by itself that there is no advantage to
MapChecks - propagating position belief forward with the deterministic transition function
gives a perfect estimate of true position. For 2CP, the optimal route time is 18 (steps). For
the solver and each simulation (see below), the position belief is initialized to the known
initial position.

’ scenario/run \ N \ vy ‘ s ‘ ds ‘ Mg ‘ Da ‘ o’ ‘ tref ‘ Db ‘ Dc ‘
2CP 401 | 0.8 | 1200s | 0.17 | 13719 | 0.7 | 0.5 | 18 | 0.34 | 0.06
2CP1hr 401 | 0.8 | 3600s | 0.14 | 24502 | 0.7 | 0.5 | 18 | 0.35 | 0.08

Table 1: SARSOP solution and navigation performance.

The parameters in table columns are:

e 1, : number of states

e 7 : discount factor (for SARSOP solve). Note this is a compromise for computation
time.

ts : SARSOP max time parameter (SARSOP solver time)

ds : SARSOP solution precision (upper-lower bound)

Ne @ SARSOP solution alpha vector count

o2 : POMDP observation MapCheck position estimate variance

pq : POMDP transition function bearing fidelity

tref : reference path step count
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e pp : probability of a bad navigation outcome (simulation)
e p. : probability of a catastrophic navigation outcome (simulation)

The behavior of SARSOP policies is quite interesting. As the belief slowly drifts from
the true position and then spreads out near each control point (see figure 1), the SARSOP
policy finally decides to begin MapCheck actions. In other words, the control is - in the
vicinity of the POMDP parameters studied - to use dead reckoning until a lack of arrival at
CPs, then proceed to MapCheck. When each CP is acquired, the belief collapses again to
a single grid cell, and the navigation to the next point of interest begins. Figure 2 is a 2D
histogram of true runner positions when a MapCheck is made. Figure 3 (in the appendix)
shows the long tail of difficult navigation episodes for this set of 1000 simulations. This
histogram is the full picture of performance which is distilled into the p, and p. metrics.

MapCheck

Figure 1: Example of a MapCheck action executed by the planner. The hexagons are control
points (red = not yet visited), the white/grayscale indicates current position belief, and the
blue is the result of the MapCheck observation (higher opacity means higher probability).
Note that the blue observation probabilities do NOT extend to the nearby control point (see
the Observation section)! The round yellow object is the true runner location (a turtlebot
icon, actually.) Collected from a gif rendering of a simulated course. Green and red squares
are the course start and end locations.



Frequency of true position at MapCheck

10.1

10.08

0.06

0.04

0.02

Figure 2: True position of runner when executing MapCheck. Collected from 1000 simulated
routes.

6. Conclusions and future work

Given the metrics computed in the previous section, a bad outcome at the (synthetic) race is
quite likely. More modeling of transition dynamics and navigation uncertainty are in order.
When using the planner on a real course map, we expect more subtlety in action choice
than ”Use dead reckoning!”. Given the run time of SARSOP, a more scalable approach will
be needed for realistic course maps.

This POMDP is just a first step in a more thorough implementation of an orienteering
planner. However, even a simple POMDP can be a challenge to understand, implement
and solve; development should proceed in small steps. A real orienteering race adds many
complexities, including:

e Route confusion (the stochastic transition) is (strongly) a function of position on the
map

e Position uncertainty (the observation) is strongly a function of position on the map.

e Terrain uncertainty exists in typical orienteering courses. For example, the penalty
for traversing some terrain may be quite high. This may cause the planner to be more
cautious near difficult terrain - but, on the other hand, it may be useful to explore
some terrain if significant time savings exist.

e Course map ingestion and processing (into a POMDP, for example) will be a significant
effort for a working planner.
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7. Appendix
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Figure 3: Histogram of route steps - a proxy for time on course. Collected from 1000
simulated routes. The p. and p, metrics are measures of this distribution.
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