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1. Introduction

The analysis below is the start of a project whose goal is the modeling of spacecraft control
near Lagrange points in Simulink and Modelica. All mathematical and theoretical mistakes
are to be blamed on the author! This analysis was inspired by Scott Manley’s video on
YouTube (Manley). Also see Baez (2009) for some nice background.

2. Forces in a 2-body system in uniform circular motion about the center
of mass

A two-body system of masses m0 and m1 in uniform circular motion in the x − y plane
about their center of mass at (0, 0) can be described in a co-rotating coordinate system such
that

r⃗0 = (−x0, 0), x0 > 0

r⃗1 = (x1, 0), x1 > 0

define the positions of the corresponding masses. In this co-rotating coordinate system,
each stationary (in uniform circular motion) mass is subject to two forces: the gravitational
force f⃗g due to all the other masses, and the fictitious centrifugal force f⃗c due to the fact
that the co-rotating coordinate system is not an inertial reference frame. In particular, our
two masses m0 and m1 must each experience 0 total force:

0 = f⃗c + f⃗g (1)

Note that real two-body systems do not exist in isolation, do not quite orbit in a single
plane, and are not populated by bodies following circular orbits! So we are simplifying the
system for a simple mathematical treatment.

Since both objects are rotating at constant angular velocity ω, equation (1) yields the
following for masses m0 and m1, respectively:

m0ω
2x0 =

Gm0m1

(x0 + x1)
2 (2)

m1ω
2x1 =

Gm0m1

(x0 + x1)
2 (3)

Dividing equation (2) by equation (3) results in the relation between masses m0 and m1

and their fixed positions in co-rotating space:

x0
x1

=
m1

m0
(4)
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We are free to choose any separation distance d = x0 + x1. If our masses are point
masses (see below), ω is entirely defined by our mass configuration via equations (2) and
(3). Furthermore, we have, from equation (4):

x0 = d

/(
1 +

m0

m1

)
x1 =

m0

m1
x0

In particular, the case d = 1 is handy (see below).

In order to define the Lagrange points, let’s consider the force on an infinitesimal mass
[Scott Manley, 2021] m at position r⃗ = rr̂. For m in uniform circular motion about the
center of mass of m0 and m1, we have the force equation:

f⃗ = f⃗c (m, r)− f⃗g (m,m0, r⃗ − r⃗0)− f⃗g (m,m1, r⃗ − r⃗1) (5)

Note that since this infinitesimal mass m is stationary in the co-rotating frame, there
are no other fictitious forces acting on it. For example, if m had non-zero velocity in the
co-rotating frame, it would experience a Coriolis force as well. Also, the fact that m is
far less than either m0 or m1 allows us to ignore it’s negligible contribution to the spatial
configuration of this system of bodies. Finally, we are considering all masses to be point
masses; the formulas for f⃗g do not hold within the physical extent of the masses (amongst
other issues!).

Writing out equation (5) in it’s full glory results in:

f⃗ = mω2r⃗ −Gmm0
r⃗ − r⃗0

|r⃗ − r⃗0|3
−Gmm1

r⃗ − r⃗1

|r⃗ − r⃗1|3
(6)

We can use equations (2) and (3) to entirely recast equation (6) in terms of locations in
co-rotating space:

f⃗ = mω2r⃗ −mω2x1 (x0 + x1)
2 r⃗ − r⃗0

|r⃗ − r⃗0|3
−mω2x0 (x0 + x1)

2 r⃗ − r⃗1

|r⃗ − r⃗1|3
(7)

Dividing out common non-zero factors yields:

f⃗ (r⃗) ∝ r⃗ − x1 (x0 + x1)
2 r⃗ − r⃗0

|r⃗ − r⃗0|3
− x0 (x0 + x1)

2 r⃗ − r⃗1

|r⃗ − r⃗1|3
(8)

A convenient coordinate system for solving (and plotting!) equation (8) is the normal-
ized, translated coordinate system

r⃗ ′ =
r⃗ + (x0, 0)

x0 + x1
(9)

which places m0 (at (−x0, 0) in the center of mass coordinate system) at the origin and
m1 at r⃗1

′ = (1, 0).
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3. Lagrange points in a 2-body system in uniform circular motion about
the center of mass

Solutions r⃗ of

f⃗ (r⃗) = 0 (10)

are the Lagrange points of this 2-body system. Squinting at equation (8) suggests that
if

|r⃗ − r⃗0| = |r⃗ − r⃗1| (11)

many terms will cancel out. A little more experimentation reveals that, indeed, if

|r⃗ − r⃗0| = |r⃗ − r⃗1| = x0 + x1 (12)

equation 10 is satisfied. These are two Lagrange points forming an equilateral triangle
in x− y location with m0 and m1. These are, by convention, referred to as L4 and L5, and
are invariant to the mass ratio of m0 and m1 - although the shape of the forces near L4

and L5 is heavily influenced by the mass ratio.

A little plotting of log
(∣∣∣f⃗ ∣∣∣) (see figures below) reveals three additional Lagrange points

along the x-axis of the co-rotating coordinate system. These three solutions lie to either
side of m0 and m1 and another between the two masses. The solution for these Lagrange
points are the roots of a fifth-order equation in x. It is a straightforward matter to use a
numerical solver to obtain these three Lagrange points. Especially convenient is a solver
(such as MATLAB’s fzero()) which accepts the root brackets, specifically:

fx(x) = 0 s.t.


−x0 − n(x0 + x1) < x < −x0 − ϵ for L3

−x0 + ϵ < x < x1 − ϵ for L1

x1 + ϵ < x < x1 + n(x0 + x1) for L2

since f⃗ only has an x-component when evaluated at points on the x-axis. Note that the
outer root limits have been set using n = 2, or ±2(x0+x1) in the MATLAB code. It should
be sufficient to use ±(x0 + x1), or n = 1.

The Lagrange point table below shows the result of root finding for Lagrange points L1

- L3 and the invariant L4 and L5 points for a range of mass ratios. The last two two-body
systems are fictitious, and meant to show what happens at mass ratios near unity. The x
and y coordinates in the table are in the normalized, shifted coordinate system such that
m0 is located at (0, 0) and m1 is located at (1, 0).

These 4 systems (with a zoom on the Sun-Earth system near the earth) are shown in
the following plots of force magnitude and table of locations of force zero solutions (1).
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system m0/m1 coord L1 L2 L3 L4 L5

Earth-Moon 81.3 x 0.84907 1.1678 -0.99291 0.5 0.5
Earth-Moon 81.3 y 0 0 0 0.86603 -0.86603
Sun-Earth 330000 x 0.99 1.0101 -1 0.5 0.5
Sun-Earth 330000 y 0 0 0 0.86603 -0.86603
m0-m1 5 x 0.65856 1.4381 -0.9025 0.5 0.5
m0-m1 5 y 0 0 0 0.86603 -0.86603
m0-m1 1 x 0.5 1.6984 -0.69841 0.5 0.5
m0-m1 1 y 0 0 0 0.86603 -0.86603

Table 1: Lagrange points for 4 systems of interest. Coordinates are in the normalized
coordinate system (equation (9)).

Figure 1: Force magnitude for the Earth-Moon system.
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Figure 2: Force magnitude for the Sun-Earth system.

Figure 3: Force magnitude for the Sun-Earth system (zoomed on Earth).
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Figure 4: Force magnitude for a fictitious system with mass ratio of 5.

Figure 5: Force magnitude for a fictitious system with mass ratio of 1.
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